7 заметок с тегом

диатомовые водоросли

Центрифуга и термостат для подготовки проб диатомовых к СЭМ микроскопии

Наш институт получил сканирующий электронный микроскоп (СЭМ). Теперь мы можем изучать диатомовых в деталях.

Но чтобы получить такие классные фото, пробы надо подготовить. Для этого нужны химикаты и оборудование: центрифуга и термостат.

Какие центрифугу и термостат для подготовки проб к СЭМ-микроскопии посоветуете?

 Нет комментариев    11   1 мес   диатомовые водоросли   СЭМ   термостат   центрифуга

Лев Белоусов. Морфогенез — это процесс самоорганизации

Конспект статьи Л. В. Белоусова (2009) «Морфогенез, морфомеханика и геном» с моими комментариями

* * *

  • Морфогенез — это когда организм в процессе развития меняет форму и образует новые структуры.
  • Любое развитие организма является морфогенезом.
  • Механизмы морфогенеза до сих пор не понятны.
  • Преформация — гипотеза о том, что все структуры организма размечены изначально. Она не верна.
  • Шаги морфогенеза не записаны в ДНК. Зная полный геном, невозможно предсказать этапы морфогенеза и во что превратится организм в финале.
  • Скорее всего геном выступает в роли пассивного инструмента. Его использует организм для производства нужных ему молекулярных структур — в частности, белков. Но тогда что является организмом?
  • Морфогенез — это процесс самоорганизации.

* * *

Морфогенез — это развитие организма, механизмы которого не понятны

Есть очень много работ, в которых описан морфогенез того или иного органа или организма в целом, и есть работы в которых высказываются гипотезы о движущих силах морфогенеза, но общепринятой теории морфогенеза нет.

Морфогенез в широком понимании — это образование новых форм и структур (от внутриклеточных до макроскопических) в ходе эмбрионального развития организмов.

Морфогенез текстуры панциря диатомовых не соответствует второй части определения, так как у микроводорослей нет эмбрионального развития. Но он соответствует первой части, потому что в процессе морфогенеза организм строит панцирь, то есть создает новые структуры.

Внутриклеточный морфогенез обычно называют цитодифференцировкой. С морфогенезом связан буквально каждый процесс индивидуального развития.

Обычно говорят про морфогенез, а не цитодифференцировку панциря диатомовых.

Морфогенез представляет собой наиболее подробный и в то же время упорядоченный процесс самоусложнения из всех происходящих как в живой, так и в неживой природе.

Общепринятой теории морфогенеза до сих пор не существует.

Мы не можем ответить, почему по ходу развития одни пространственные структуры сменяются строго определенными другими или почему в некоторых случаях закономерные финальные структуры возникают из вариабельных и даже беспорядочных, находящихся на грани хаоса.

Как правило, вопрос [о причинах и механизмах регулирующих морфогенез] так и не ставиться. Подавляющее большинство исследователей вообще не рассматривает морфогенез как самостоятельную проблему. Более того, пока считается, что такой проблемы вообще не существует.

Гипотеза об изначальной разметке структур организма не верна

Преформация — учение, утверждающее, что морфогенез как процесс самоусложнения вообще фиктивен, а все структуры организма пространственно размечены «изначально», в некоторый загадочный начальный момент времени.

Есть аналогичная концепция претекстуры диатомовых (diatoms prepattern) — некого шаблона, на который осаждаются частички кремния, что формирует текстуру.

Отсюда

«How does an amorphous substance produce such a variety of organized shapes? Two major approaches have been followed: either (i) the pattern forms spontaneously out of silica by diffusion limited aggregation (DLA) or (ii) there is a prepattern of something else onto which or within which the silica precipitates (which begs the question as to what causes that pattern)» .

«If silica is ’merely’ precipitated onto an already existed scaffold (prepattern), as some would hypothesize, then we ought to be able to construct artificial scaffolds for silica precipitation».

«The compustat was conceived as a means of pushing diatom morphology to match any preconception we might have. It would work by visually scanning all diatoms in a small growth chamber with a digital camera attached to a motorized microscope, and matching the observed patterns against an ideal ’template’».

Преформация долгое время господствовала в эмбриологии. Хотя Г. Дриш в начале XX века открыл эмбриональные регуляции и строго доказал отсутствие изначальной «разметки», отдельные фрагменты этого воззрения существуют до сих пор.

Эмбриональнае регуляция — восстановление нормальной, геометрически правильной и полной структуры организма, несмотря на удаление, добавление или перемешивание его части. Тогда значение каждого элемента системы есть функция его положения.

Для объяснения морфогенеза используют: позиционную информацию, морфогенетическое поле, мозаичность развития, недришевские регуляции, внеклеточный матрикс, механические напряжения.

Геном не содержит алгоритма морфогенеза

К ним [воззрениям о преформации] относится утверждение, что

сам по себе развивающийся организм не обладает самостоятельной динамикой, а лишь пассивно воспринимает предельно детализированную информацию, записанную на матрице. Таковы представления о том, что морфогенез и вообще все процессы развития «запрограммированы генетически».

Доведение этого утверждения до логического предела означало бы, что

если мы располагаем полной информацией о структуре генома особи, мы сможем предсказать ее морфогенез.

Вся совокупность имеющихся фактов показывает несостоятельность этого утверждения.

См. например, «Пути гены-признаки неисповедимы» и «От генетики к эконике». Здесь речь идет об эпигенетике, когда геном задает архитектуру системы, а некоторая (неизвестная) надгенетическая среда и внешние факторы формируют программный код, что вместе создает организм.

Морфогенез лишь в малой степени видоспецифичен.

Наиболее фундаментальные процессы [морфогенеза] протекают сходным образом у генетически весьма различных организмов

Значит алгоритм морфогенеза записан на надгенетическом уровне. Если он вообще где-то записан, а не создается по мере «выполнения». Ну как самораспаковывающийся код самовыполнемой программы.

Геном и морфогенез — сущности совершенно разного порядка

Гены всегда рассматриваются как статические дискретные факторы, тогда как морфогенез — это разворачивающийся в пространстве-времени непрерывный (континуальный — не расчленяемый на отдельные признаки) процесс. Понятно, что прямая проекция одного на другое невозможна.

Даже если принять, что каждый шаг морфогенеза связан с активацией или репрессией отдельных генов (на самом деле это не так), то пространственно-временное расписание активации и репрессии генов должно определяться не ими самими, а вне- (эпи-) генетическими факторами, прямо или косвенно связанными с морфогенезом.

Интересно, как исследователи соотносят гены и морфогенез диатомовых?

Исследования последних десятилетий говорят о существенно большем:

оказалось, что одни и те же (точнее гомологичные) наборы генов, белковые факторы или сигнальные каскады обеспечивают совершенно разные морфогенетические процессы

как у разных видов, так и на разных стадиях развития одного и того же вида.

Все-таки, геном задает конечную конструкцию организма или нет? Или он задает приблизительный финальный вид, который может варьировать в определенных пределах?

С другой стороны

гомологичные эмбриональные структуры у близких видов могут иметь негомологичное генетическое обеспечение.

Это было ясно уже Н. И. Вавилову и позже было подтверждено.

В статье по ссылке не разбирался.

Зная, какой ген экспрессируется или какой сигнальный каскад в данный момент развития и в данной локализации работает, мы ничего не можем сказать о том, какой морфогенетический процесс состоится.

Очевидно, что природа располагает весьма ограниченным набором генетических факторов и сигнальных путей, которыми организм распоряжается согласно плану своего развития как необходимыми, но не содержащими информацию орудиями. Так молоток необходим, чтобы забить гвоздь, но не он определяет, где и когда гвоздь будет забит.

Наглядная аналогия генома и молотка.

То есть не геном управляет конечным устройством организмов, а организм распоряжается геномом, для построения себя, согласно плану своего развития. То есть план развития записан не в геноме.

То есть трудно избежать парадоксального утверждения, что генетические факторы вовсе не содержат в себе сколько-нибудь однозначно информации о развитии.

Информация о развитии [алгоритм морфогенеза] возникает по ходу дела в самой развивающейся системе

Это вплотную подводит нас к представлению о морфогенезе как о процессе самоорганизации.

Центричные и пеннатные диатомовые. Различия в половом процессе

В прошлый раз я рассказал о том, что центричные и пеннатные диатомовые отличаются текстурой створок.

Помимо этого у них разные типы полового процесса: у центричных — изогамия, у пеннатных — оогамия.

Стадии полового процесса у пеннатной диатомовой Sellaphora auldreekie. Фото со страницы Альга Волда

Изогамия, значит, что у центричных диатомовых нет пола. Поэтому любая центричная диатомовая способна спариваться с любой другой центричной диатомовой того же вида. Если захочет.

Оогамия, значит, что у пеннатных диатомовых есть мужские и женские организмы — и только между ними возможен секс.

Секс в культурах диатомовых

Диатомовые размножаются двумя способами. Либо водоросль делится на две новых, при этом набор генов у потомков не меняется. Либо она вступает в половой процесс с партнером противоположного пола, тогда у потомков меняется генетический набор. Так как у центричных и пенатных диатомовых типы полового процесса отличаются, это влияет на генетическое разнообразие организмов, культивируемых в искусственных условиях.

Культуру диатомовых, и, вообще, любых микроводорослей, выводят из единственного организма. Вылавливают микроводоросль, помещают в чашку с питательной средой, создают комфортную температуру и регулярно освещают. Микроводоросль от этого начинает делится и размножаться. И образует одновидовую культуру. Так как все микроводоросли происходят от единственного предка-Адама, то после деления они получаются генетически однородными. Половой процесс меняется генетическую однородность и помогает организмам эволюционировать.

Изогамия повышает генетическое разнообразие диатомовых внутри одной культуры, а оогамия — нет

Изогамия помогает скрещиваться центричным диатомовым внутри одной культуры. У потомков меняется генетический набор, следовательно генетическое разнообразие центрических диатомовых из одной культуры со временем повышается.

При оогамии должны встретиться мужские и женские особи пеннатных диатомовых. Но пол диатомовых после деления сохраняется таким же, как у родителя. Поэтому пеннатные диатомовые из одной культуры могут только делиться, следовательно разнообразие генов в такой культуре не меняется.

Изогамия помогает скрещивать любые культуры центричных диатомовых одного вида, а оогамия — нет

В некоторых случаях культуру диатомовых надо разбавить новыми генами. Для этого берут культуры микроводорослей, произошедшие от разных индивидов одного вида, и пытаются скрестить.

Изогамные центричные из разных чашек запросто скрещиваются. А оогамные пеннатные скрещиваются, только если в пробирках окажутся мужские и женские особи. Если исследователю не повезло, и в культурах все особи пеннатных одного пола, скрещивания не получится. Генетический материал останется однородным.

Изогамия и оогамия помогают отнести диатомовую к центричным или пеннатным

Когда ученый сомневается, какая диатомовая перед ним: центричная или пеннатная, он проводит эксперимент. Разводит культуры из нескольких водорослей и пытается их скрестить. Если удается при любой комбинации культур — значит это центричные диатомовые. Если удается в некоторых случаях или не получается совсем — значит пеннатные.

Оогамия помогает поддерживать чистые генетические линии диатомовых, а изогамия — нет

Для проведение генетических опытов важно иметь чистую генетически однородную культуру организмов. Такую культуру можно получить только из пеннатных диатомовых водорослей, потому что пеннатные водоросли из одной культуры скрещиваться друг с другом не могут.

Половой процесс помогает доказать, что диатомовые из разных культур относятся к одному виду

Некоторые виды диатомовых столь похожи, что их сложно отличить по морфологическим признакам. Поэтому пойманных диатомовых пытаются с крестить с известными культивируемыми видами. Если получится, значит видовая принадлежность водоросли установлена.

Дополнительное чтение

Cтатья Давидовича Н. А. с соавторами «Репродуктивные особенности диатомовых водорослей: значение для культивирования и биотехнологии».

Страница «Альга Волда» о половом воспроизведении диатомовых рода Sellaphora.

Центричные и пеннатные диатомовые. Различия текстуры створок

Рассказ о двух больших морфологических группах диатомовых водорослей.

Кремниевый панцирь-коробочка диатомовых водорослей пронизан мельчайшими отверстиями. Их особенно много на основаниях панцирей — створках. Это перфорации створок.

Это диатомовая из Черного моря относится к роду Thalassiosira. У нее сохранилась только верхняя половинка панциря, поверхность которой сплошь пронизана отверстиями. Фото Е. Д. Бедошвили и А. М. Лях

В зависимости от строения, перфорации делят на ареолы и поры.

Пора — это простая дырка.

Ареола — это сложно устроенная дырка. Она накрыта с обеих сторон кремниевыми крышечками, на которых тоже есть отверстия. Одна из крышечек содержит одно большое отверстие — форамен. Вторая — пронизана маленькими порами. Она называется крибрумом, а поры — крибральными порами. Крибральные поры тоже покрыты крышечками — крибеллумом, которые пронизаны совсем-совсем маленькими порами. Они уже ничем не покрыты. Внутренняя часть ареолы называется камерой.

Ареола в разрезе. Рисунок из статьи в Нейче

Есть еще другие типы отверстий, но они не многочисленные, и не о них сейчас речь.

Перфорации формируют текстуру створки. Внешний вид и количественные характеристики текстуры — важный таксономический признак. Он помогает человеку различать таксоны диатомовых. Кроме того текстура помогает организму жить.

Исследователи давно заметили, что по строению текстур диатомовых можно отнести к двум группам: центричным и пеннатным. У центричных ареолы расходятся из одной точки — центра, а у пеннатных — от линии. Поэтому название центричных происходит от слова «центр», а пеннатных от лат. «penna» — перо, на которое похожа текстура.

Текстура центричных начинается из точки (слева), пеннатных — от линии (справа). Фото по краям Е. Д. Бедошвили и А. М. Лях, рисунок в центре из «библии диатомологов»

В этом, собственно, и состоит основное отличие центричных диатомовых от пеннатных.

Повторю. Центричные и пеннатные — это две большие морфологические группы диатомовых, которые отличаются способом построения текстуры. Это две параллельные линии эволюции диатомовых водорослей.

 3   2017   диатомовые водоросли   пеннатные диатомовые   центричные диатомовые

Построить эллипс по пяти точкам. Плагин для Инкскейпа

Диатомовые водоросли иногда ложатся полубоком на предметный столик электронного микроскопа.

Thalassiosira proschkinae — крошечная диатомовая из Азовского моря. СЭМ. Наружняя и внутреняя поверхность створки; правая створка деформирована. Фото Е.Д. Бедошвили, А.М. Лях

Такой полуанфас бывает удобен. Он помогает понять геометрию и морфологию кремниевого панциря. Но в данном случае мне надо вернуть створке первоначальную круглую форму, так как сейчас, из-за поворота, она стала эллиптической. Для этого надо найти главные оси эллипса, чтобы понять, как он повернут.

Из аналитической геометрии известно, что любые пять точек плоскости однозначно задают коническое сечение, если никакие три их них не лежат на одной прямой. На Маз.Стакэксченже описан алгоритм построения эллипса по пяти точкам.

Все данные есть. И я уже было собрался писать программу, но нашел плагин для Инкскейпа.

После установки, он доступен в разделе Extensions → Generate from Path → Ellipse by 5 Points.

Плагин преобразует ломаную из пяти точек в эллипс. Если эллипс не получается, плагин ничего не строит. Плагин правильно решает задачу, но эллипс иногда не проходит по границе створки.

Плагин преобразует пятивершинную ломаную линию в эллипс

Допускаю, что при подготовке к микроскопированию створка диатомовых деформируется. Поэтому эллипс не совпадает.

А есть ли такой плагин для Иллюстратора?

 2   2017   векторная графика   геометрия   диатомовые водоросли   инкскейп

Начал фотографировать диатомовых

Начал собирать коллекцию собственных фотографий диатомовых. Мне помогает Оля Ш. Придумал простой способ фотографрования: к окуляру микроскопа приставляем фотоапарат и жмем затвор. Получается терпимо.

Неизвестная пресноводная диатомовая сфотографирована с помощью фотоаппарата приставленного к окуляру микроскопа

На микроскопе с фотонасадкой — лучше.

Licmophora sp. из Черного моря

Особенно хорошо с фазовым контрастом.

Спасибо Жене Д. за время на микроскопе.

Мечтаю, чтобы было, как в «Иллюстрированном атласе бентосных диатомовых морской среды Кувейта» (ПДФ, 30 Мб).

Фотография живой диатомовой Amphora decussata из кувейтского атласа, рис. 128. Авторы Фальза Юсиф Ал-Ямани и Маша Сабурова. Масштаб 10 мкм

Фотографируем живые клетки. Не кремниевые трупы, а живые организмы с хлоропластами.

Licmophora cf. ehrenbergii из Черного моря; cf. означает неподтвержденную идентификацию, сокр. от лат. confer

Они снуют туда-сюда, стремятся уйти от яркого света. Идут по прямой, когда нет препятствий. Задорно обходят вокруг песчинок. Весело протанцовывают рядом с соседом. Или увлекают за собой, когда он не сопротивляется. Даже если партнер значительно больше.

Маленькая диатомовая хантсшия тащит большую плевросигму

Возникают методические вопросы.

  • В каком разрешении сохранять фотографии? Сейчас около 5000 пикселей по ширине.
  • Как их сортировать?
  • С чего начать определение?

Буду отвечать на них по мере решения.

Систематики, в лице Лены Н., закидывают нас тапками: штрихов не видно, шва не видно, даже род не понятен. А мне кажется, что мы разберемся. Главное, что мы фиксируем микроскопическую жизнь и нам интересно.

 3   2016   Licmophora   диатомовые водоросли   метод   фото диатомовых

Панцирь диатомовых водорослей — это геометрически правильная коробочка

Диатомовые водоросли — это микроскопические самостоятельные растения, обитающие в воде.

Цвет живых диатомовых водорослей меняется от светло-желтого до буро-зеленого из-за пигментов: каротина, ксантофилла и диатомина. Фото Микроскопи-ЮК

Средний размер диатомовых водорослей 5-150 микрон. Диатомовые видны только в микроскоп.

Диатомовые относятся к одноклеточным водорослям. Это не куст, растущий под водой. Это одна полноценная клетка с хлоропластами, ядром и вакуолями, покрытая прочным панцирем.

Диатомовая — самодостаточный организм. Фото Микроскопи-ЮК
Это не дерево — это колония диатомовых вида Licmophora flabellata

Самое интересное в диатомовых — это панцирь. Он прочный, потому что состоит из кремния. Точнее на 87-99% из аморфного кремнезема или гидрата диоксида кремния SiO2·nH2O, аналогичного опалу.

Панцирь прозрачен и без труда пропускает солнечные лучи, необходимые для фотосинтеза. Углекислый газ, кислород, азот, фосфор и другие биогенные элементы поступают внутрь клетки через крошечные отверстия в стенках панциря — поры, ареолы и альвеолы.

Отверстия в стенках панциря Achnanthidium minutissimum. Фотография из черновика статьи Кетрин Лайнвебер и Питера Крота

Панцирь диатомовых геометрически правилен. Природа сконструировала огромное разнообразие математически выверенных форм панцирей диатомовых, покрытых многочисленными структурными элементами.

Панцирь устроен как коробка из-под леденцов. Он состоит из двух надетых одна на другую половин — крышки эпитеки и донышка гипотеки. Эпитека всегда больше гипотеки. Основания эпитеки и гипотеки называются створками, боковые каемки — пояском. Поясок не цельный, а состоит из отдельных вставочных ободков.

Панцирь диатомовых — это коробочка

Жесткий панцирь-коробочка накладывает ограничение на рост микроорганизма. Диатомовая растет только в одном направлении: вдоль центральной оси, которая проходит перпендикулярно плоскости створок. Рост происходит за счет нарастания пояска — между краем створки и пояском нарастают новые вставочные ободки. Таким способом диатомовая увеличивает высоту панциря.

Диатомовая растет только по высоте

Длина и ширина панциря уменьшаются после деления клетки. Во время деления панцирь-коробочка раскрывается. Эпитека и гипотека расходятся и дают жизнь двум организмам. Дочерние клетки получают от родителя половину панциря, которая становится эпитекой. Получается, что эпитека и гипотека родителя всегда превращаются в эпитеку потомков.

Деление диатомовой из рода Striatella или Pseudostriatella

Так как эпитека больше гипотеки, то дочерняя диатомовая, выросшая из гипотеки родителя, будет немного меньше размера родителя — примерно на двойную толщину стенок панциря. Вторая дочка останется такой же. Это каноническое правило Макдональда-Пфитцера.

После деления половина диатомовых уменьшается в размере, другая — остается такой же

Из всякого правила есть исключения. Некоторые виды диатомовых после деления не уменьшаются в размере. Возможно это связано с гибкостью поясковых ободков, что позволяет гипотеке оставаться равной или даже превышать по размеру эпитеку. Однако эта гипотеза требует исследований.

Диатомовые рода Dytilum и Odontella от Чарльза Креба

Диатомовые интересны не только жизненным циклом, но и разнообразием кремниевых элеметов панциря. Панцирь-коробочка — это первое приближение к морфологии диатомовых. Чем больше детализация — тем больше структур и сложнее систематика видов.

Из-за этого систематики мучаются. Они описывают новые виды, переописывают коллекции коллег, и никак не придут к единому мнению — что есть вид диатомовой.

А диатомовые, тем временем, живут в стеклянном домике неторопливой жизнью, и им абсолютно начхать на систематику.

Резюме

  1. Кремниевый панцирь диатомовой устроен как геометрически правильная коробочка.
  2. Жесткий панцирь позволяет организму расти только в одном направлении — по высоте.
  3. После деления длина и ширина панциря одной из дочерей слегка уменьшается, но у некоторых видов панцири остаются такими же.
  4. Систематика диатомовых сложная штука.
 41   2016   диатомовые водоросли   микроводоросли   морфология панциря диатомовых